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Spanwise scale selection in plane mixing layers 

By MICHAEL M. ROGERS AND ROBERT D. MOSER 
NASA-Ames Research Center, Moffett Field, CA 94035, USA 

(Received 6 March 1992 and in revised form 3 September 1992) 

Direct numerical simulations of temporally evolving plane mixing layers undergoing 
as many as three pairings have been examined for evidence of spanwise scale change. 
All simulations were begun from a few low-wavenumber disturbances, usually 
derived from linear stability theory, in addition to the mean velocity. The amplitude 
of the initial three-dimensional disturbances varied from infinitesimal to large 
enough to trigger a rapid transition to turbulence. The time required for a change of 
characteristic spanwise scale with infinitesimal three-dimensional disturbances was 
found to be very long, requiring three or more pairings to complete a doubling of the 
spanwise scale. Stronger three-dimensionality can produce more rapid scale changes, 
but it is also likely to trigger transition to turbulence. No evidence was found for a 
change from an organized array of rib vortices at  one spanwise scale to a similar 
array at a larger spanwise scale. 

1. Introduction 
Flow visualizations in several experiments done in the 1970s indicated that a 

predominantly streamwise secondary structure existed in the braid regions of plane 
mixing layers (Miksad 1972; Brown & Roshko 1974; Konrad 1976; Breidenthal 
1981). This structure was investigated further by others and found to consist of 
streamwise vortices, which were nearly aligned with the strain field of the 
predominantly two-dimensional spanwise rollers (Bernal 1981 ; Jimenez, Cogollas & 
Bernal 1985; Bernal & Roshko 1986; Lasheras, Cho & Maxworthy 1986). 

Lin & Corcos (1984) showed that streamwise vorticity present in the braid regions 
of a plane mixing layer will ‘collapse’ into compact vortices if the circulation 
associated with the streamwise vorticity is large enough compared to its 
characteristic spanwise scale, the strain rate due to the spanwise rollers, and the 
viscosity of the fluid. Streamwise vortices become apparent in flow visualization 
experiments when their vorticity collapses. 

The spanwise scale of the streamwise vortices is highly variable. Stability 
calculations by Pierrehumbert & Widnall (1982) show that the most amplified 
spanwise wavelength associated with a periodic array of Stuart (1967) vortices is 
about two-thirds of the fundamental disturbance wavelength, but that disturbances 
with considerably longer and shorter wavelengths have nearly the same growth rate. 
Corcos & Lin (1984) confirmed this insensitivity to spanwise scale for the more 
realistic case of an evolving two-dimensional base flow. The experiments of Lasheras 
& Choi (1988) found no appreciable difference in growth rate for disturbances 
between one-fifth and three times the fundamental wavelength in their experiments 
using serrated splitter-plate trailing edges. Nygaard & Glezer (1991 ) were able to 
generate streamwise vortices with virtually any spanwise wavelength using their 
splitter-plate heater mosaic. Despite this broad range of possible spanwise 
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wavelengths, many ‘naturally evolving ’ mixing layers seem to have a characteristic 
spanwise scale that is close to that predicted by Pierrehumbert & Widnall (1982). 

There is, however, a considerable difference of opinion regarding changes in 
spanwise scale that may occur as a result of the streamwise scale changes during 
pairings. Flow visualizations by Bernal & Roshko (1986) indicate that their rib 
spacing remains constant through several pairings, until the completion of the so- 
called ‘mixing transition’. Recent experiments by Bell & Mehta (1992) indicate a 
spanwise scale change a t  the location of the second pairing according to the criterion 
for pairing locations proposed by Huang & Ho (1990). Bell & Mehta (personal 
communication) feel that this location may actually correspond to the third pairing. 
On the other hand, a three-dimensional reconstruction of a pairing event by Jimenez 
et al. (1985) indicates that the number of streamwise vortices is halved after a 
pairing. Jimenez (1983) postulated a mechanism for this scale change, in which 
neighbouring ribs annihilate each other, leaving ribs a t  twice the original spanwise 
scale but with the same circulation as before. Similarly Huang & Ho (1990) find that 
the preferred spanwise scale doubles after both the first and second pairings in their 
experiments, and suggest that it would continue to double with each pairing. 
Experiments to date thus seem to indicate that the locations of spanwise scale 
changes may be facility dependent. 

Here we address the issue of spanwise scale change using numerical simulation. In 
particular, the conditions under which a scale change occurs and the mechanisms for 
such a scale change are investigated. Numerical simulation is ideally suited to this 
task since it allows precise specification of disturbances and provides a detailed 
description of the flow field. In previous work by Moser & Rogers (1993, hereafter 
referred to as MR), and Rogers & Moser (1992), a thorough examination of rib 
vortices, and three-dimensionality in general, was undertaken for numerically 
simulated mixing layers undergoing up to three pairings of the spanwise rollers. 
These flows are re-examined for evidence of spanwise scale change, and new 
simulations designed to elucidate possible spanwise scale change mechanisms are 
studied as well. 

As in MR, the direct numerical simulations examined here are of the time- 
developing mixing layer and were generated by the pseudospectral numerical 
method outlined in Spalart, Moser & Rogers (1991). The use of simple ‘clean’ initial 
conditions allows a controlled study of spanwise scale changes. The governing 
equations, non-dimensionalization used, description of the initial conditions, and 
definitions of many quantities (e.g. Fourier-mode amplitudes Aa,J examined in this 
paper are given in $ 2  of MR, which immediately precedes this paper in the Journal. 

The evolution of infinitesimal three-dimensional disturbances is described in $2, 
while that of finite-amplitude initial disturbances is given in $3. A brief summary and 
discussion can be found in $4. 

2. Scale change of infinitesimal three-dimensional disturbances 
Linear stability analysis of the inviscid Stuart (1967) vortices (Pierrehumbert & 

Widnall 1982) suggests that there is a most unstable spanwise wavelength for three- 
dimensional disturbances that is proportional to the roller spacing. One might 
therefore suppose that the most unstable wavelength would increase with pairings, 
providing a linear mechanism for a change in spanwise lengthscale. To determine 
if such a linear mechanism exists, the evolution of infinitesimal three-dimensional 
perturbations with Q < < 4 is considered in mixing layers that undergo as many as 
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2DOP 4.00 - - - 13.4 17.5 - - - - - - - - 
2D1Y 4.00 3.00 - - 11.9 - 21.5 29.2 46.5 - - - - - 
2D2Y 4.00 3.00 3.00 - 11.9 - 21.5 31.2 - 46.7 63.9 90.3 - - 
2D3Y 4.00 3.00 3.00 3.00 11.9 - 21.5 32.0 - 47.0 66.7 - 103.7 139.8 
TABLE 1. Parameters of the two-dimensional simulations. Disturbance profiles are eigenfunctions, 
Re, = 250. g5eo = 0,  and A, = 1.16(2x) for all cases. 2D3P was not run long enough to determine T , ~ .  

three pairings ( p  is a scaled spanwise wavenumber, see MR for definition). These 
computations have also been used to find the wavelength of the initially fastest 
growing disturbance, thereby determining the value of the fundamental spanwise 
disturbance wavelength A, used here and in Rogers & Moser (1992) and MR. 

Three-dimensional disturbances with various spanwise wavelengths have been 
allowed to evolve in four different two-dimensional base flows, which undergo zero, 
one, two, or three pairings (2DOP, 2D1P, 2D2P, and 2D3P, respectively). Initial 
conditions and the time& at which several important events occur (see MR) are given 
for each base flow in table 1. The times include the rollup time 7, (When A,, reaches 
its first maximum), the pairing times 7pn (where the nth pairing time is given by the 
first maximum of &J, the spiral-arm re-entry times rBn, and the oversaturation 
times ran, where the subscript n indicates association with the nth pairing. As noted 
in MR, the spiral-arm re-entry time is the time at which the spiral arms of spanwise 
vorticity created after a pairing are advected into the mid-braid plane. This occurs 
after each pairing and thus each pairing has an associated spiral-arm re-entry. After 
the flow pairs for the last time (or if it does not pair fast enough) it eventually 
‘ oversaturates ’, with spanwise vorticity re-entering the mid-braid region and 
remaining their continuously (see MR). This occurs only after the last pairing in each 
of these base flows. The four base flows and the significance of the times defined 
above (along with their definitions) are discussed in detail in MR. 

The amplitude evolution of disturbances with various spanwise wavelengths is 
shown in figure 1 for each of the four base flows. For the single-pairing base flow 
(2DlP, figure 1 b )  disturbances with $ d p < 4 are considered. Over most of the time 
period shown, the largest amplitude is attained by the p = 1 disturbance. For this 
reason, the spanwise wavelength A, = 0.6A, was chosen as the fundamental (p = I)  
wavelength in Rogers & Moser (1992), MR, and this paper. 

For the remaining three base flows, only disturbances with ,4 < 1 are considered 
because the most unstable spanwise wavelength should increase as the characteristic 
streamwise scale (the roller spacing) increases by pairing. Indeed the wavelength of 
the disturbance with the largest amplitude does increase in the two- and three- 
pairing cases (figure 1 c, d ) .  However, this change in the dominant scale occurs slowly. 
For example, the dominant scale does not double even after two pairings in the two- 
and three-pairing flows (figure i c ,  d). After the third pairing, the amplitude of the 
first subharmonic exceeds that of the fundamental but not that of the p = 3 
disturbance (figure 1 d) .  However, the growth rate of the subharmonic disturbance 
(p  = i) is about 15 YO larger than that ofthe /3 = $disturbance by the end ofthe three- 
pairing simulation (2D3P) and therefore it appears that A :; will eventually overtake 
A& although this doubling of the dominant spanwise scale may not occur until a 
fourth pairing has occurred. Thus linear analysitj does not support a ‘self-similar’ 

an 
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FIGURE 1. Time development of three-dimensional disturbance amplitudes (A;) of various spanwise wavelength disturbances 
for (a) ZDOP, (b) ZDlP, (c) 2D2P, and (d) 2D3P. 
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FIGURE 2.  Time development of (a)  A 3  and ( b )  A$ for disturbances evolving in each of the 

two-dimensional base flows. 

picture of mixing-layer growth, where each pairing is accompanied by a doubling of 
the characteristic spanwise lengthscale. 

The evolution of A 2  and A:: is replotted in figure 2 (that of A,*, is given in figure 
5 of MR) to facilitate comparison among the base flows. As was found in MR, the 
evolution for each base flow departs from that of base flows that undergo further 
pairings at oversaturation. 

Disturbances with wavelengths several times larger than A, are largely stable until 
(well) after oversaturation. As can be seen in figure 1, disturbances with /3 = 4 and 
do not grow for a long period (after the initial increase in amplitude associated with 
the buildup of wg/ for t < 10, see $3.1 of Rogers & Moser 1992). The B = 
disturbances finally begin to grow after the second pairing ( T ~ ~ )  in the two- and 
three-pairing cases (figure 2 b ) .  There is apparently a low-wavenumber cutoff for 
disturbance growth prior to oversaturation, which is between /3 = t and f until the 
second pairing and then shifts to t < p < +. As with the dominant scale, the cutoff 
wavelength does not appear to double with each pairing. 

After oversaturation, all the perturbations with p d 1 eventually begin to grow. 
The /3 = 4 disturbances begin to grow after T , ~  in 2D1P and well after T,,, in 2DOP. 
Similarly, the p = $ disturbance begins growing after rO2 in 2D2P. As can be seen in 
figure 1, after oversaturation the disturbances have similar growth rates, with the 
longest-wavelength perturbations growing somewhat slower. It was demonstrated 
in Rogers & Moser (1992) and MR that it is only after oversaturation that 
the translative instability of Pierrehumbert & VC7idnall (1982) is active, and 
Pierrehumbert & Widnall showed that this instability is insensitive to the spanwise 
wavelength. The above observations indicate that the pre-oversaturation growth of 
disturbances is more wavelength selective than that associated with the translative 
instability. 

A possible explanation for the slow change in the dominant and cutoff spanwise 
wavelengths may be found by examining the structure of the two-dimensional base 
flow (see $ 3  of MR). For large Reynolds number, the diameter of the  region of 
concentrated spanwise vorticity in the roller core increases by a factor of 4 2  with 
each pairing, rather than by a factor of 2. If the cutoff and dominant wavelengths 
increase with the diameter of the roller core vorticity concentration, the wavelength 
would only grow as the square root of the spacing between the rollers. In Rogers & 
Moser (1992)) it was shown that the analysis of Waleffe (1990) could be used to  
predict the growth rate and most unstable wavelength of the three-dimensional 
disturbance in a rolled up mixing layer. This analysis also suggests that the dominant 
spanwise wavelength should indeed be proportional to the size of the vorticity 
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FIGURE 3. Contours of w, in the rib plane (RP) for perturbations with (a) /J' = 1 and ( 6 )  ,4 = a t  
t = 40.4 (7,,* = 46.7) on a base flow undergoing two pairings (2D2P). The contour increments are (a )  
3r;/(83' and ( h )  O.OU;/(C)*. In  this and subsequent similar figures solid contours indicate 
positive vorticity, dotted contours indicate negative vorticity and tic marks are a t  intervals. 

concentration in the roller core. These arguments suggest that the wavelength of the 
fastest growing perturbation and the cutoff' wavelength should double with every 
two pairings. The data presented here are consistent with this speculation, although 
they are too limited to confirm it. 

The structure of the perturbation vorticity field associated with the largely stable 
wide-spanwise-wavelength disturbances differs from that of the fundamental (,4 = 1)  
disturbances. As an example, streamwise vorticity contours for both p = 1 and Q 
disturbances are shown in figure 3 at a time shortly before the second pairing. In 
addition to being much weaker, the w, structure in the p = Q case is qualitatively 
different; for example, the engulfed rib vorticity is negative rather than strongly 
positive and the braid region contains layers of o, that alternate in sign. 

3. Nonlinear scale change 
In the preceding section it was found that the linear mechanism by which the 

dominant spanwise wavelength changes was very slow. However, this apparently 
contradicts the (nonlinear) experimental results of Huang & Ho (1990), which 
suggest that the dominant spanwise scale should double after each pairing. In this 
section, nonlinear mechanisms that could hasten a scale change are investigated. The 
initial condition parameters for the flows used here are given in table 2 .  Note that the 
flows PHOlP, PHtxlP and PHixlP are identical except for the relative phasing of 
the three-dimensional disturbances (the value of is 0, in ,  and an, respectively). 
Also PHinOP is identical to PHinlP  except for the lack of a pairing. 

While the phase of the fundamental streamwise invariant disturbance, q501, is 
irrelevant to  the flow evolution (it is set to zero for convenience), the subharmonic 
phases are important. The range over which the subharmonic phase (ME, 
equation (9)) can be varied without including redundant cases is from 0 to in. If there 
are no other subharmonics, initial conditions with q50+ equal to  either endpoint of 
this range will have one of two spatial symmetries, which are preserved by the 
Navier-Stokes equations. For 9,; = 0 the z-plane-reflection symmetry given by 
equation (10) in MR is satisfied, with symmetry planes as given in $2.3 of MR. When 
$4. = in the point-reflection symmetry in equation (11) of MR holds, with symmetry 
points as given in $2.3 of MR. When a second subharmonic is added ((0, a) mode), the 
range of non-redundant phases is from 0 to +x is q50;=0, from $71 to zn if 
#o; = in, and from 0 to x otherwise. When q50; is 0 or in and $,,; equals one of the 
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FIGURE 4. Time development of three-dimensional disturbance amplitudes (Asp)  for (a)  PHOlP, 
PH@lP, and PH$rOE (upper three curves a t  t = 10 are A, ,  and lowcr three are As;) and ( b )  w ~ 1 n 2 P  
(A,; not initialized). 

4 0  A% A% 
Simulation x 1 0 2  x i 0 2  x i 0 2  

PH&OY 4.00 - - 

PHOlP 4.00 3.00 - 

PHi7tiP 4.00 3.00 - 

PH$lP 4.00 3.00 - 
WMID2P 4.52w' 3.4TWG 5.14"' 
TURB2P 4.00 3.00 3.00 

A0,t Adt A0tt  
X 10' X 10' X 10' $o; (bo$ 7, 7,0 7pl Tsl 'rgZ 'rS2 

8.32 6.66 - ~ T C  - 12.2 15.4 - - - ~- 

8.32 6.66 - 0 -  11.4 - 22.2 27.1 - - 
8.32 6.66 - - 11.4 - 22.0 27.1 - - 
8.32 6.66 - ~ T C  -- 11.4 - 22.0 27.4 - - 
3.18 1.02 1.54 0 0 11.8 - 21.1 31 40.1 54 
8.32 6.66 10.11 ~ T C  &IT 11.3 - 21.0 29.2 47.1 T 

t For comparison with cases cited in Rogers & Moser (1992), rz/Aog = 4.382,5.472 and 7.210 for 
disturbances with /3 = I ,  $ and 

TABLE 2. Parameters of the three-dimensional simulations. Two-dimensional disturbance profiles 
are eigenfunctions unless superscripted wG, in which case they are oG. Three-dimensional 
disturbance profiles are wG. Re0 = 250, $ao = 0, A, = 1.16(27t) and A, = O.Sh, for all cases. A 'T '  
indicates that the flow is too 'turbulent' for 7s2 to be well-defined. Numbers given with less 
precision (TJ are the result of -0, not being computed at  cvery time Atep for WMIDZP. All the flows 
were either too 'turbulent' or not computed long enough to determine 7,, and rO2. 

respectively. 

endpoints of the range of non-redundant phases, then the relevant spatial symmetry 
is preserved. 

Following the reasoning used in $2, the dominant spanwise scale ( A , )  is defined to 
be the wavelength h,/P (p $. 0) associated with the maximum amplitude ASF. By this 
definition A,  = A, initially for all cases discussed here except for the TURBSP flow 
(described in detail in MR), in which A, = 4h, at t = 0. A scale change is said to occur 
when A, changes. Since the simulations have a finite spanwise domain not more than 
four times larger than A,, there are only a few discrete wavelengths near A, that can 
be represented. Thus any scale changes that occur, must occur at discrete times. 
There can be no gradual change in A,. The time r,, is defined to be the time at  which 
such a scale change occurs. Note that scale change as defined here reflects a change 
in the energy of spanwise Fourier modes. Such a scale change does not necessarily 
imply a change from an array of rib vortices at  one spacing to similar rib vortices at 
another spacing (see $3.2). 

3.1. Fourier cmalysis 

The evolution of A,, and A4 for the PHOlP, Y H ~ K ~ P ,  and PHinOP simulations (see 
table 2) is shown in figure 4 (a) .  A scale change occurs in each of these cases (even the 
non-pairing case, PHanOP) at  times 7,, of 31.5, 29.4, and 28.9 respectively. Scale 
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FIGURE 5.  Time development of ( a )  A; and (a) Aa. 

change occurs first, in the non-pairing case because the pairing suppresses the growth 
of As;. In the pairing cases, the two phasings have different scale change times 
because a t  t M 20, the growth of A,; is delayed for YHOlP. An intermediate phasing 
case (PHiniY) was also simulated (not shown in figure 4) and had a scale change time 
intermediate between PHOIY and PH&lP (7sc = 29.9). 

These scale changes are much more rapid than those in the linear analysis of $2,  
which implies that the scale change in these cases is essentially nonlinear. In figure 5, 
A,*, and A:; from PHknlP and PHinOP are compared with those from the 
corresponding linear analysis. The most important difference between the linear and 
nonlinear cases is that the nonlinear ,b' = 1 modes have saturated, as was observed in 
MR. That is, A,*, does not grow beyond t = 20 and the growth prior to this is less than 
that for the linear perturbation. This saturation occurs in the non-pairing case as 
well, despite the fact that the linear analysis perturbations are undergoing post- 
oversaturation exponential growth (see MR). I n  contrast, A 2  does not stop growing, 
although it does evolve nonlinearly. A:! even exceeds the linear results a t  around 
t = 30 in the pairing case. Thus it is the nonlinear saturation of the fundamental 
(/3 = 1) coupled with the continued growth of the subharmonic (,b' = +) that allows the 
spanwise scale to change. To confirm this, we examine WMIDBP (figure 4 b ) .  This flow 
has weaker initial three-dimensional disturbances, which therefore saturate later. 
The scale change occurs much later in this case (after the second pairing, 7,, = Sl.O), 
and only after A s1 has saturated. 

3.2. Spanwise scale change mechanisms 
The most obvious structural manifestations of the three-dimensionality in the mixing 
layer are the rib vortices that reside in the braid regions. It is therefore expected that 
any change in the dominant spanwise lengthscale will be accompanied by a 
reorganization of the rib vortices a t  the new lengthscale. It is the mechanism for this 
reorganization that is of interest here. I n  flows undergoing a nonlinear spanwise scale 
change, the ribs are collapsed into compact nearly circular vortices as described by 
Lin & Corcos (1984) because collapse of the ribs is one of the first nonlinear features 
to develop (Rogers & Moser 1992). To track the evolution of the ribs, the streamwise 
vorticity in a ( x ,  y)-plane passing through the middle of the braid region (mid-braid 
plane) will be examined. This plane, located a t  x = 0, is denoted by MP. 

To understand how the ribs in the mid-braid plane evolve, we must first examine 
the physical consequences of the different phasings of the subharmonics. When 
subharmonic (0, ,8) modes are included, the resulting rib vortices are no longer 
uniform in strength. The initial patterns of rib strength variation for $4 of 0 and in 
are shown in figure 6 ( a ,  d ) .  The $,,; = 0 phase (PHOlP) results in ribs of two 
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FIQURE 6. Contours of w, in the MP for (a, b ,  c) PHOlP and (d, e , f )  PHinlP. Times are (a, d)  0, (a) 
27.2 ( T , ~  = 27.1, T,, = 31.5), (c) 34.6, ( e )  28.1 ( T , ~  = 27.7, T,, = 29.4), (f)  34.6. The contour increment 
is f 1.0 except for (a),  (d) (t  = 0) where it is k0.04. The spanwise domain has been extended using 
periodicity to 2L, = 44. 
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strengths, arranged with a strong pair and a weak pair next to each other (figure 6a). 
This preserves the plane-reflection symmetry (MR, equation (10)) as discussed above. 
The other extreme phasing (& = an, PHanlP) produces ribs of three strengths, a 
strong and weak rib of the same sign and two opposite-signed medium strength ribs 
(figure 6 4 .  With this phasing the point-reflection symmetry (MR, equation (11) )  
is preserved, with the symmetry points located in the middle of the  strongest and 
weakest ribs. Intermediate phasings result in a rib pattern intermediate between the 
above extremes, and have no symmetries (PHinlP).  

As the mixing layer evolves, spanwise vorticity is removed from the braid region, 
and the ribs collapse. Once this has occurred, the evolution of the ribs in the M P  is 
largely determined by the net induced motion of each rib vortex on the rest of the 
ribs. (Note that an array of uniform-strength ribs do not move from their MP 
locations at y = 0 (see MR).) In  PHOlP, the strong rib pair drives itself upward (for 
the sign shown in figure 6 a )  and the weak rib pair moves downward. Once away from 
the centreline, the weaker ribs drive the strong pair together, while being separated 
by the induced motion of the stronger ribs (figure 6 b ,  c ) .  All of the ribs are prevented 
from moving too far from the centreline by the compressive component of the strain 
associated with the primary roller vortices. I n  PHinlP, the rib motion is dominated 
by the strongest rib, which remains fixed a t  the same location due to  the point 
symmetry (as does the weakest rib). The two intermediate-strength ribs rotate 
around the strongest rib and, because of the induced motion of the weakest rib, 
slowly spiral inwards (figure 6 e , f ) .  Tn both flows (figure 6 c , f )  these self-induced rib 
motions continue for some time after rS1 despite the presence of additional vorticity 
in the MP, which is generated when spanwise vorticity re-enters the braid region at 
T , ~  (see MR). By t = 36, the intermediate-strength ribs in PHinlP (negative w, in 
figure 6 f )  are directly above and below the strongest (positive) rib vortex. At this 
point, however, many new regions of significant o, are present in the mid-braid plane 
and shortly after this the flow appears ‘turbulent ’, with little evidence of the original 
rib vortices. As expected, the PHQnlP evolution (see Moser & Rogers 1992) is 
intermediate between that of the two extreme cases discussed above. 

The above rib behaviour suggests two possible mechanisms for a spanwise scale 
change. The first, associated with cPo+ = 0, may result from viscous annihilation of a 
strong vortex pair that is being compressed together, similar to the mechanism 
proposed by Jimenez (1983). The second, suggested by the q50; = an case, occurs when 
the inwardly spiralling, intermediate-strength vortices viscously combine with a 
stronger rib, resulting in a weak rib with the sign of the original intermediate- 
strength pair. Both of these mechanisms depend on viscosity to be carried to  
completion, and are therefore slow. I n  practice, even flows resulting from large (0, /3) 
initial disturbances will not complete this process before rsl, when vorticity re-enters 
the braid region and greatly increases the complexity of the flow in the braid region. 
(Weaker initial disturbances that do not result in collapsed ribs show minimal rib 
movement prior to  r,J. Also both scale change mechanisms result in weak rib pairs 
with twice the initial spanwise spacing. Thus, if this kind of scale change were carried 
to completion it would result in a reduction of three-dimensionality (as measured by 
rib strength). It is instructive to note that the second mechanism (associated with 

= an) results in Fourier mode energies that indicate spanwise scale change long 
before the complete viscous combination of the three stronger ribs has occurred. In  
particular, when the intermediate-strength rib pair is situated directly above and 
below the strongest rib (figure 6 f ), the spanwise variation is primarily accounted for 
by the (a, +) modes. In  this state As+ > A,, (see figure 4a) .  Caution must therefore be 
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FIGURE 7 .  Time development of A,, (A,: not initialized) for TWRBZY. 

used in drawing conclusions about the structures present in a flow based on the 
occurrence of the scale change given by Fourier mode energies. 

The two scale change mechanisms discussed above occur even in flows that do not 
possess the spatial symmetries exhibited by PHOlP and PHInlP (e.g. PHinlP, see 
Moser & Rogers 1992) and when multiple spanwise subharmonics are present. For 
example, two spanwise subharmonics were included in the TURB~P case (see table 2), 
and the subharmonic phases ($o+ = in and $,,; = &n) were chosen to get a very 
irregular initial rib strength distribution with no symmetries. (A second streamwise 
subharmonic was also included in TURB~P to allow a second pairing, so that the 
transition to turbulence could be completed (see MR).) A plot of A,, for various 
spanwise wavelengths is shown in figure 7. As can be seen from this figure, a scale 
change occurs a t  about the same time as in the previous cases (7sc = 32.0), but both 
the /i’ = modes exceed the fundamental a t  nearly the same time. (Note 
that there are three prior crossings of A,, and As; due to the large initial amplitude 
of A+) Contours of the streamwise vorticity in the surviving MP (z = 0) a t  this time 
are shown in figure 8. The rib vortices have moved by mutual induction as discussed 
above and it appears that both scale change mechanisms are occurring at  the same 
time. Shortly after this time, this flow becomes turbulent and it is no longer possible 
to identify organized rib vortices in the MP. This turbulent flow is discussed in detail 
in MR. 

As noted above, the flow evolution in the MP becomes more complicated when 
vorticity re-enters this plane at rS1 (or at T~~ in the absence of pairing). Although it 
appears that the re-entry of spanwise vorticity did not play an important role in the 
scale changes discussed above, the restructuring of the mid-braid vorticity after rgl 
could provide an additional mechanism for changing the characteristic spanwise 
scale. However, many of the flows examined in the preceding sections become 
‘turbulent ’ after 7,1, so that clearly defined ribs are not present to visually determine 
the spanwise scale (although A,  is still well-defined). 

To study the impact that re-entry of vorticity into the braid region could have on 
scale change we again oonsider WMJD~P,  a flow with weaker initial perturbations. 
Figure 9 shows MP contours of o, at six diEerent times during the evolution of 
W M ~ D ~ P .  Just after T , ~  = 32 (figure 9 a ) ,  additional streamwise vorticity is visible 

and ,8 = 



332 M .  M .  Rogers and R . D . Moser 

a 

FIGURE 8. Contours of‘ w, in the surviving MP of the T U R B ~ P  simulation at t = 32.2 (7,1 = 29.2, 
7,, = 32.0). The contour increment is f 1.0. 

away from the centreline. This vorticity becomes stronger by rp2 = 40.1 (figure 9b) 
and then (because it has the same sign as the rib vorticity at the same spanwise 
location) ‘recollapses’ into the ribs, resulting in stronger rib vortices, which are again 
compact and near the centreline (figure 9c). After T~~ = 54 (figure 9d) another re- 
entry of vorticity into the MP occurs. This time, however, w, of both signs is 
generated above and below many of the ribs. The recollapse is thus more complicated 
(figure 9f). Since there is a marked subharmonic component to the re-entering 
vorticity, it  can change the relative strengths of the ribs. A t  t = 61.3 z 7,, (figure 9e) 
the first mechanism described above (associated with do; = 0) is active, as evidenced 
by the two pairs of rib vortices that are compressed together and dropping below the 
centreline (one on the domain boundary). Indeed eleven time units later (figure Sf), 
there appear to be only two pairs of significant rib vortices, approximately equally 
spaced and slightly above the centreline. Viscous effects have weakened the 
remaining ribs whose remnants are still visible in figure 9(f).  Although the actual 
scale change in the WMIDBP flow occurred by the same mechanism as in PHOlP, the 
recollapse of new vorticity generated by the spiral-arm re-entry may be responsible 
for speeding up the process by enhancing the non-uniformity of the ribs. 

It is perhaps surprising that scale change (as defined here) occurs even in the 
absence of pairing (see $3.1). This scale change is not predicted by linear analysis (see 
figure la). At early times (before 7,0 = 15.4), the PH&OP flow evolves like PHinlP, 
since the initial three-dimensional perturbations are identical (see figure 4a) .  By 
t = 30 (well beyond 700) the flow has been ‘oversaturated’ for a long time and much 
vorticity has re-entered the braid region, greatly increasing the complexity of the 
flow (see figure 10). Because of this, the flow appears ‘turbulent’. Despite the fact 
that there are no well-defined ribs, it is clear that a single large-scale structure (p = 
+) dominates the MP. This scale change is apparently unrelated to the two scale 
change mechanisms discussed above. 

t Despite the fact that A,; > A,, after T,, = 28.9, Aot remains significantly smaller than Ao1. 
Thus streamwise-averaged measures of scale change, such as that used by Huang & Ho (1990), 
would probably not indicate any scale change in this flow. 
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FIGURE 9. Cmntours of w, in the MP of WMID2P at (u) t = 33.6 ( T ~  = sl), (b )  t = 40.1 = 7g2, (C) 

t = 46.4, (d )  t = 55.7 ( T , ~  = 54), ( e )  t = 61.3 ( T ~ ~  = 61.0), and d f )  t = 72.6. The contour increments 
are (a, b, c) T0.2, (d )  kO.3, ( e )  50.35 ,  and ( f )  k0.4. In (c) there i s  an extra contour at kO.1 t o  
show the vortieity crossing over neighbouring ribs. 
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FIGURE 10. Contours of w, in the M P  of PHinOP a t  t = 30.0. The contour increment is 10.6. 

4. Summary and discussion 
The work presented here was undertaken to explain the diEerences between 

observations (e.g. Bernal & Roshko 1986) that the dominant spanwise lengthscale in 
a mixing layer remains constant until the mixing (or turbulence) transition and other 
observations (e.g. Huang & Ho 1990) that the spanwise scale doubles with each 
pairing. The mechanisms by which such a scale change might occur are also of 
interest. 

Huang & Ho (1990) argue that their experimental observations are consistent with 
the linear analysis of Pierrehumbert & Widnall (1982), which suggests that there is 
a preferred spanwise wavelength proportional to the roller spacing in the mixing 
layer. However, the more detailed linear analysis presented here indicates that the 
linear mechanism for spanwise scale change is exceptionally slow. Apparently about 
two pairings are required to double the spanwise wavelength of the fastest growing 
mode, and as many as four pairings may be required to actually change the dominant 
(highest energy) spanwise lengthscale. Thus the linear analysis does not support 
Huang & Ho’s picture of self-similar growth of streamwise and spanwise lengthscales. 
One of the reasons for the slowness of the linear scale change is that the two- 
dimensional base flow itself is not similar from pairing to pairing. As pointed out in 
MR and $2, the diameter of the concentrated core of spanwise vorticity in a pairing 
mixing layer a t  moderate or high Reynolds number only grows by a factor of d2 
with each pairing. A scaling in which the spanwise wavelength of the fastest growing 
mode is proportional to  the size of this concentrated vortex core is thus consistent 
with the results in 92. Also the growth rate of disturbances is not very sensitive to 
wavelength (for wavelengths near the fastest growing one). Therefore, once a 
disturbance has become the fastest growing one, a long time is required for it to 
become the most energetic. 

A change in the most energetic spanwise wavelength can occur more rapidly with 
finite-amplitude (nonlinear) perturbations. Such a scale change can occur after the 
first pairing, or even in the absence of pairing. Among other things, nonlinearity 
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stops the growth of the fundamental spanwise disturbance, while allowing longer 
wavelength disturbances to continue to grow. Depending on the amplitudes of the 
initial three-dimensional disturbances, a doubling in dominant spanwise scale has 
been observed to occur after zero, one, or two pairings, and the dominant scale can 
double or quadruple after one pairing. While a doubling of the most energetic 
spanwise scale could occur after each of several pairings as suggested by Huang & Ho 
(1990), such an occurrence would necessarily depend on the details of the disturbance 
environment and therefore cannot be considered to be a general result. 

The definition of dominant spanwise scale used here is based on the amplitude of 
Fourier modes with a given spanwise wavelength (Asp). The amplitude of the 
spanwise Fourier modes with no streamwise variation A,, could also have been used. 
This definition more closely mimics the scale change diagnostic of Huang & Ho 
(1990) and Bell & Mehta (1992) who examined the time-averaged streamwise velocity 
as a function of z .  Using this scale change measure, scale changes occur later than by 
the previous definition. For example, in TURB~P the spanwise scale would double at  
t = 49.1 rather than quadruple at T,, = 32.0. These differences in the scale change 
diagnostic do not affect our qualitative conclusions regarding the occurrence of scale 
changes. 

By defining scale change in reference to the dominant Fourier mode, there are no 
implications regarding changes occurring in the flow structures. However, in most 
discussions of scale change, i t  is implicitly assumed that the scale change involves a 
reorganization of the rib vortices into an array of counter-rotating vortices at a new 
lengthscale. Two mechanisms by which such a reorganization could occur have been 
identified. First, a strong, roughly equal-strength rib pair will move away from the 
centreline in the braid, be brought together by the induced motion of neighbouring 
ribs, and eventually be viscously annihilated (similar to the mechanism proposed by 
Jimenez 1983). Second, a single strong rib can induce nearby weaker ribs of opposite 
sign to rotate around it, eventually leading to a viscous amalgamation and a single 
weaker rib vortex. In  addition, these scale change mechanisms may be aided by the 
re-entry of spanwise vorticity into the braid region, which can enhance the non- 
uniformity in the strength of the ribs. I n  both mechanisms, weaker ribs a t  double the 
spanwise lengthscale would result if the process were carried to completion. 
However, completion is by viscous diffusion and is therefore slow. Note that the scale 
change time, as measured by the Fourier amplitudes, occurs early in the process, long 
before the actual viscous annihilation or recombination is completed. 

In all cases, the scale change mechanisms described above could not proceed to 
completion. After the process was initiated, and the dominant scale changed 
(according to the Fourier mode definitions given above), highly three-dimensional 
vorticity associated with the transition to turbulence entered the braid region, 
making it dificult to identify the rib vortices. Apparently rib vortices that are strong 
enough to initiate the nonlinear scale change (they must a t  least be collapsed in the 
sense of Lin & Corcos 1984) are also strong enough to initiate the transition to 
turbulence as discussed in MR. The simple scenario of an array of rib vortices being 
transformed into a similar array with a new, larger lengthscale does not occur. 
Spanwise scale change occurs only in the statistical sense of an increase in the 
wavelength of the dominant Fourier mode. 

In  conclusion, the main reason for the apparent difference between observations 
tha t  a scale change occurs after each pairing (Huang & Ho 1990) and observations 
that scale changes do not occur until the transition (e.g. Bernal & Roshko 1986) is 
probably the difference in disturbance environments in the experimental facilities. 
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The data upon which Huang & Ho (1990) based their conclusion that the spanwise 
scale doubles with each pairing are the result of a particular disturbance environment 
that produced this result for the first two pairings. Initial disturbance levels could 
certainly be chosen that reproduce this behaviour in a numerical simulation. It is also 
important to remember that when the three-dimensional disturbances are strong 
enough to produce a rapid scale change (as in the experiments mentioned above), 
then the scale change is accompanied by the onset of the transition to turbulence. 
This is consistent with the results of both Huang & Ho (transition starts at about the 
first pairing) and Bernal & Roshko, as well as other experiments (e.g. Jimenez 1983). 
Thus, a simple array of counter-rotating rib vortices a t  the new spanwise scale does 
not exist after a scale change. 

This work was initiated to answer questions posed by Professor C.-M. Ho during 
the 1988 Center for Turbulence Research Summer School Program and we are 
grateful for his inspiration. Helpful comments provided by Dr N. Mansour and 
Professor S. K. Lele on a draft of this paper are also appreciated. Some of the 
computations were performed on the NAS supercomputers at  NASA Ames Research 
Center. 
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